您当前的位置:网站首页 » 决策参阅

栏目导航

站内搜索









工业大数据的来源

在工业生产和监控管理过程中无时无刻不在产生海量的数据,比如生产设备的运行环境、机械设备的运转状态、生产过程中的能源消耗、物料的损耗、物流车队的配置和分布等。而且随着传感器的推广普及,智能芯片会植入到每个设备和产品中,如同飞机上的“黑匣子”将自动记录整个生产流通过程中的一切数据。

我们认为,包括人、财、物、信息、知识、服务等在内的生产要素在制造全系统和全生命周期中的组合、流动会持续不断地产生Volume(体量浩大)、Variety(模态繁多)、Velocity(生成快速)和Value(价值密度低)的大数据。

企业信息系统存储了高价值密度的核心业务数据。上世纪60年代以来信息技术加速应用于工业领域,形成了产品生命周期管理(PLM )、企业资源规划(ERP )、供应链管理(SCM )和客户关系管理(CRM )等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、物流供应数据以及客户服务数据,存在于企业或产业链内部,是工业领域传统数据资产。

近年来物联网技术快速发展,装备物联网成为工业大数据新的、增长最快的来源,它实时自动采集了生产设备和交付产品的状态与工况数据。一方面,机床等生产设备物联网数据为智能工厂生产调度、质量控制和绩效管理提供了实时数据基础;另一方面,2012年美国通用电气公司提出的工业大数据(狭义的),专指装备使用过程中由传感器采集的大规模时间序列数据,包括装备状态参数、工况负载和作业环境等信息,可以帮助用户提高装备运行效率,拓展制造服务。